Кирпич. Облицовка камнем. Мокрый фасад. Фасадные панели. Дизайн и декор

Кирпич. Облицовка камнем. Мокрый фасад. Фасадные панели. Дизайн и декор

» » Векторные доказательства теоремы чевы и менелая. Решение задач с помощью теоремы менелая

Векторные доказательства теоремы чевы и менелая. Решение задач с помощью теоремы менелая

— Что общего между теоремой Менелая и наркотиками?
— О них все знают, но никто не говорит.
Типичный разговор с учеником

Это прикольная теорема, которая поможет вам в тот момент, когда кажется, что уже ничего не поможет. В уроке мы сформулируем саму теорему, рассмотрим несколько вариантов её использования, а в качестве десерта вас ждёт суровое домашнее задание. Поехали!

Для начала — формулировка. Возможно, я дам не самую «красивую» версию теорему, но зато самую понятную и удобную.

Теорема Менелая. Рассмотрим произвольный треугольник $ABC$ и некую прямую $l$, которая пересекает две стороны нашего треугольника внутренним образом и одну — на продолжении. Обозначим точки пересечения $M$, $N$ и $K$:

Треугольник $ABC$ и секущая $l$

Тогда верно следующее соотношение:

\[\frac{AM}{MB}\cdot \frac{BN}{NC}\cdot \frac{CK}{KA}=1\]

Хочу отметить: не надо зубрить расположение букв в этой злобной формуле! Сейчас я расскажу вам алгоритм, по которому вы всегда сможете восстановить все три дроби буквально на лету. Даже на экзамене в состоянии стресса. Даже если вы сидите за геометрией в 3 часа ночи и вообще уже ничего не понимаете.:)

Схема простая:

  1. Чертим треугольник и секущую. Например, так, как показано в теореме. Обозначаем вершины и точки какими-нибудь буквами. Это может быть произвольны треугольник $ABC$ и прямая с точками $M$, $N$, $K$, либо какая-нибудь другая — суть не в этом.
  2. Ставим ручку (карандаш, маркер, гусиное перо) в любую вершину треугольника и начинаем обход сторон этого треугольника с обязательным заходом в точки пересечения с прямой . Например, если сначала пойти из точки $A$ в точку $B$, то получим отрезки: $AM$ и $MB$, затем $BN$ и $NC$, а затем (внимание!) $CK$ и $KA$. Поскольку точка $K$ лежит на продолжении стороны $AC$, то при движении из $C$ в $A$ придётся временно свалить из треугольника.
  3. А теперь просто делим соседние отрезки друг на друга ровно в том порядке, в котором мы получили их при обходе: $AM/MB$, $BN/NC$, $CK/KA$ — получим три дроби, произведение которых и даст нам единицу.

На чертеже это будет выглядеть вот так:

Простая схема, позволяющая восстановить формулу из т. Менелая

И сразу пара замечаний. Точнее, это даже не замечания, а ответы на типичные вопросы:

  • Что будет, если прямая $l$ пройдёт через вершину треугольника? Ответ: ничего. Теорема Менелая в этом случае не работает.
  • Что будет, если выбрать другую вершину для старта или пойти в другую сторону? Ответ: будет то же самое. Просто изменится последовательность дробей.

Думаю, с формулировкой разобрались. Давайте посмотрим, как вся эта дичь применяется для решения сложных геометрических задач.

Зачем всё это нужно?

Предупреждение. Чрезмерное применение теоремы Менелая для решения планиметрических задач может нанести непоправимый вред вашей психике, поскольку данная теорема значительно ускоряет вычисления и заставляет вспоминать другие важные факты из школьного курса геометрии.

Доказательство

Я не буду её доказывать.:)

Ладно, докажу:

Теперь осталось сравнить два полученных значения для отрезка $CT$:

\[\frac{AM\cdot BN\cdot CK}{BM\cdot CN\cdot AK}=1;\]

\[\frac{AM}{BM}\cdot \frac{BN}{CN}\cdot \frac{CK}{AK}=1;\]

Ну вот и всё. Осталось только «причесать» эту формулу, правильно расставив буквы внутри отрезков — и формула готова.:)

ТЕОРЕМЫ ЧЕВЫ И МЕНЕЛАЯ

Теорема Чевы

Большинство замечательных точек треугольника могут быть по­лучены при помощи следующей процедуры. Пусть имеется некоторое правило, согласно которому мы сможем выбрать определенную точку A 1 , на стороне BC (или её про­должении) треугольника ABC (например, выберем середину этой стороны). Затем построим аналогичные точки B 1 , C 1 на двух других сторонах треугольника (в нашем примере еще две середи­ны сторон). Если правило выбора удачное, то прямые AA 1 , BB 1 , CC 1 пересекутся в некоторой точке Z (выбор середин сторон в этом смысле, конечно, удачный, так как медианы треугольника пересекаются в одной точке).

Хотелось бы иметь какой-нибудь общий метод, позво­ляющий по положению точек на сторонах треугольника определять, пересекается ли соответствующая тройка прямых в одной точке или нет.

Универсальное условие, «закрывшее» эту проблему, нашёл в 1678 г. итальянский инженер Джованни Чева .

Определение. Отрезки, соеди­няющие вершины треугольника с точками на противолежащих сторонах (или их продолжениях), называют чевианами, если они пересекаются в одной точке.

Возможны два варианта расположения чевиан. В одном варианте точка


пересечения – внутренняя, а концы чевиан лежат на сторонах треугольника. Во втором варианте точка пересечения внешняя, конец одного чевиана лежит на стороне, а у двух других чевиан концы лежат на продолжениях сторон (смотри чертежи).

Теорема 3. (Прямая теорема Чевы) В произвольном треугольнике АВС на сторонах ВС, СА, АВ или их продолжениях взяты соответственно точки А 1 , В 1 , С 1 , такие, что прямые АА 1 , ВВ 1 , СС 1 пересекаются в некоторой общей точке, тогда

.

Доказательство: известно несколько оригинальных доказательств теоремы Чевы, мы рассмотрим доказательство, основанное на двукратном применении теоремы Менелая. Запишем соотношение теоремы Менелая первый раз для треугольника ABB 1 и секущей CC 1 (точку пересечения чевиан обозначим Z ):

,

а второй раз для треугольника B 1 BC и секущей AA 1 :

.

Перемножив два этих отношения, проведя необходимые сокращения получим соотношение, содержащееся в утверждении теоремы.

Теорема 4. (Обратная теорема Чевы) . Если для выбранных на сторонах треугольника ABC или их продолжениях точек A 1 , В 1 и C 1 выполняется условие Чевы:

,

то прямые AA 1 , BB 1 и CC 1 пересекаются в одной точке .

Доказательство этой теоремы проводится методом от противного, также, как доказательство теоремы Менелая.

Рассмотрим примеры применения прямой и обратной теорем Чевы.

Пример 3. Докажите, что медианы треугольника пересекаются в одной точке.

Решение. Рассмотрим соотношение

для вершин треугольника и середин его сторон. Очевидно, что в каждой дроби в числителе и знаменателе стоят равные отрезки, поэтому все эти дроби равны единице. Следовательно, выполнено соотношение Чевы, поэтому, по обратной теореме, медианы пересекаются в одной точке.

Теорема (теорема Чевы) . Пусть точки лежат на сторонах и треугольника соответственно. Пусть отрезки и пересекаются в одной точке. Тогда

(обходим треугольник по часовой стрелке).

Доказательство. Обозначим через точку пересечения отрезков и . Опустим из точек и перпендикуляры на прямую до пересечения с ней в точках и соответственно (см. рисунок).


Поскольку треугольники и имеют общую сторону , то их площади относятся как высоты, проведенные на эту сторону, т.е. и :

Последнее равенство справедливо, так как прямоугольные треугольники и подобны по острому углу.

Аналогично получаем

и

Перемножим эти три равенства:

что и требовалось доказать.

Про медианы:

1. Разместим в вершинах треугольника ABC единичные массы.
2. Центр масс точек A и B находится посередине AB. Центр масс всей системы должен находиться на медиане к стороне AB, так как центр масс треугольника ABC - это центр масса центра масс точек A и B, и точки C.
(запутанно получилось)
3. Аналогично - ЦМ должен лежать на медиане к сторонам AC и BC
4. Так как ЦМ - единственная точка, то, следовательно все эти три медианы должны пересекаться в ней.

Кстати, сразу же следует, что пересечением они делятся в отношении 2:1. Так как масса центра масс точек A и B равна 2, а масса точки C равна 1, следовательно, общий центр масс согласно теореме о пропорции будет делить медиану в отношении 2/1.

Спасибо большое, доступно изложено, думаю, будет не лишним представить док-во и при помощи методов геометрии масс, например:
Прямые AA1 и CC1 пересекаются в точке O; AC1: C1B = p и BA1: A1C = q. Нужно доказать, что прямая BB1 проходит через точку O тогда и только тогда, когда CB1: B1A = 1: pq.
Поместим в точки A, B и C массы 1, p и pq соответственно. Тогда точка C1 является центром масс точек A и B, а точка A1 - центром масс точек B и C. Поэтому центр масс точек A, B и C с данными массами является точкой O пересечения прямых CC1 и AA1. С другой стороны, точка O лежит на отрезке, соединяющем точку B с центром масс точек A и C. Если B1 - центр масс точек A и C с массами 1 и pq, то AB1: B1C = pq: 1. Остается заметить, что на отрезке AC существует единственная точка, делящая его в данном отношении AB1: B1C.

2. Теорема Чевы

Отрезок, соединяющий вершину треугольника с некоторой точкой на противоположной стороне, называется чевианой . Таким образом, если в треугольнике ABC X , Y и Z - точки, лежащие на сторонах BC , CA , AB соответственно, то отрезки AX , BY , CZ являются чевианами. Этот термин происходит от имени итальянского математика Джованни Чевы, который в 1678 году опубликовал следующую очень полезную теорему:

Теорема 1.21. Если три чевианы AX, BY, CZ (по одной из каждой вершины) треугольника ABC конкурентны, то

|BX| |XC| · |CY| |YA| · |AZ| |ZB| =1 .

Рис. 3.

Когда мы говорим, что три прямые (или отрезка) конкурентны , то мы имеем в виду, что все они проходят через одну точку, которую обозначим через P . Для доказательства теоремы Чевы вспомним, что площади треугольников с равными высотами пропорциональны основаниям треугольников. Ссылаясь на рисунок 3, мы имеем:

|BX| |XC| = SABX SAXC = SPBX SPXC = SABX− SPBX SAXC− SPXC = SABP SCAP .

Аналогично,

|CY| |YA| = SBCP SABP , |AZ| |ZB| = SCAP SBCP .

Теперь, если мы перемножим их, то получим

|BX| |XC| · |CY| |YA| · |AZ| |ZB| = SABP SCAP · SBCP SABP · SCAP SBCP =1 .

Теорема, обратная к этой теореме, также верна:

Теорема 1.22. Если три чевианы AX, BY, CZ удовлетворяют соотношению

|BX| |XC| · |CY| |YA| · |AZ| |ZB| =1 ,

то они конкурентны .

Чтобы это показать, предположим, что две первые чевианы пересекаются в точке P , как и прежде, а третья чевиана, проходящая через точку P , будет CZ′ . Тогда, по теореме 1.21,

|BX| |XC| · |CY| |YA| · |AZ′| |Z′B| =1 .

Но по предположению

|BX| |XC| · |CY| |YA| · |AZ| |ZB| =1 .

Следовательно,

|AZ| |ZB| = |AZ′| |Z′B| ,

точка Z′ совпадает с точкой Z , и мы доказали, что отрезки AX , BY и CZ конкурентны (, стр. 54 и , стр, 48, 317).

Математика - 10 класс Мендель Виктор Васильевич, декан факультета естественных наук, математики и информационных технологий ДВГГУ ТЕОРЕМЫ ЧЕВЫ И МЕНЕЛАЯ Особое место в планиметрии отведено двум замечательным теоремам: теореме Чевы и теореме Менелая. Эти теоремы не включены в базовую программу курса геометрии средней школы, но их изучение (и применение) рекомендуется всем, кто интересуется математикой чуть больше, чем это возможно в рамках школьной программы. Чем же интересны эти теоремы? Сначала отметим, что при решении геометрических задач продуктивно сочетаются два подхода: - один основан на определении базовой конструкции (например: треугольник - окружность; треугольник - секущая прямая; треугольник - три прямых, проходящих через его вершины и пересекающиеся в одной точке; четырехугольник с двумя параллельными сторонами и т.п.), - а второй - метод опорных задач (простых геометрических задач, к которым сводится процесс решения сложной задачи). Так вот, теоремы Менелая и Чевы относятся к наиболее часто встречающимся конструкциям: первая рассматривает треугольник, стороны или продолжения сторон которого пересечены некоторой прямой (секущей), во второй речь идет о треугольнике и трех прямых, проходящих через его вершины, пересекающиеся в одной точке. Теорема Менелая Эта теорема наблюдающуюся (вместе для с обратной) отношений показывает отрезков, закономерность, соединяющих вершины некоторого треугольника и точки пересечения секущей со сторонами (продолжениями сторон) треугольника. На чертежах приведены два возможных случая расположения треугольника и секущей. В первом случае секущая пересекает две стороны треугольника и продолжение третьей, во втором - продолжения всех трех сторон треугольника. Теорема 1. (Менелая) Пусть ABC пересечен прямой, не параллельной стороне АВ и пересекающей две его стороны АС и ВС соответственно в точках В1 и А1, а прямую АВ в точке С1 тогда AB1 CA1 BC1    1. B1C A1B C1 A Теорема 2. (обратная теореме Менелая) Пусть в треугольнике АВС точки А1, В1, С1 принадлежит прямым ВС, АС, АВ соответственно, тогда, если AB1 CA1 BC1   1 B1C A1B C1 A , то точки А1, В1, С1 лежат на одной прямой. Доказательство первой теоремы можно провести так: на секущую прямую опускают перпендикуляры из всех вершин треугольника. В результате получают три пары подобных прямоугольных треугольников. Фигурирующие в формулировке теоремы отношения отрезков заменяют на отношения перпендикуляров, соответствующих им по подобию. Оказывается, что каждый отрезок - перпендикуляр в дробях будет присутствовать дважды: один раз в одной дроби в числителе, второй раз, в другой дроби, в знаменателе. Таким образом, произведение всех этих отношений окажется равным единице. Обратная теорема доказывается методом «от противного». Предполагается, что при выполнении условий теоремы 2 точки А1, В1, С1 не лежат на одной прямой. Тогда прямая А1В1 пересечет сторону АВ в точке С2, отличной от точки С1. При этом, в силу теоремы 1, для точек А1, В1, С2 будет выполняться то же отношение, что и для точек А1, В1, С1. Из этого следует, что точки С1 и С2 поделят отрезок AB в одинаковых отношениях. Тогда эти точки совпадут - получили противоречие. Рассмотрим примеры применения теоремы Менелая. Пример 1. Доказать, что медианы треугольника в точке пересечения делятся в отношении 2:1 считая от вершины. Решение. Запишем полученное в теореме соотношение, Менелая для треугольника ABMb и прямой McM(C): AM c BM M bC    1. M c B MM b CA Первая дробь в этом произведении очевидно равна 1, а третья второе отношение равно 1 . Поэтому 2 2:1, что и требовалось доказать. Пример 2. Секущая пересекает продолжение стороны AC треугольника ABC в точке B1 так, что точка C является серединой отрезка AB1. Сторону AB эта секущая делит пополам. Найдите, в каком отношении она делит сторону BC? Решение. Запишем для треугольника и секущей произведение трех отношений из теоремы Менелая: AB1 CA1 BC1    1. B1C A1B C1 A Из условий задачи следует, что первое отношение равно единице, а третье 1 , 2 таким образом, второе отношение равно 2, т.е., секущая делит сторону BC в отношении 2:1. Следующий пример применения теоремы Менелая мы встретим, когда будем рассматривать доказательство теоремы Чевы. Теорема Чевы Большинство замечательных точек треугольника могут быть получены при помощи следующей процедуры. Пусть имеется некоторое правило, согласно которому мы сможем выбрать определенную точку A1, на стороне BC (или её продолжении) треугольника ABC (например, выберем середину этой стороны). Затем построим аналогичные точки B1, C1 на двух других сторонах треугольника (в нашем примере еще две середины сторон). Если правило выбора удачное, то прямые AA1, BB1, CC1 пересекутся в некоторой точке Z (выбор середин сторон в этом смысле, конечно, удачный, так как медианы треугольника пересекаются в одной точке). Хотелось бы иметь какой-нибудь общий метод, позволяющий по положению точек на сторонах треугольника определять, пересекается ли соответствующая тройка прямых в одной точке или нет. Универсальное условие, «закрывшее» эту проблему, нашёл в 1678 г. итальянский инженер Джованни Чева. Определение. Отрезки, соединяющие вершины треугольника с точками на противолежащих сторонах (или их продолжениях), называют чевианами, если они пересекаются в одной точке. Возможны два варианта расположения чевиан. В одном варианте точка пересечения - внутренняя, а концы чевиан лежат на сторонах треугольника. Во втором варианте точка пересечения внешняя, конец одного чевиана лежит на стороне, а у двух других чевиан концы лежат на продолжениях сторон (смотри чертежи). Теорема 3. (Прямая теорема Чевы) В произвольном треугольнике АВС на сторонах ВС, СА, АВ или их продолжениях взяты соответственно точки А1, В1, С1, такие, что прямые АА1, ВВ1, СС1 пересекаются в некоторой общей точке, тогда BA1 CB1 AC1   1 CA1 AB1 BC1 . Доказательство: известно несколько оригинальных доказательств теоремы Чевы, мы рассмотрим доказательство, основанное на двукратном применении теоремы Менелая. Запишем соотношение теоремы Менелая первый раз для треугольника ABB1 и секущей CC1 (точку пересечения чевиан обозначим Z): AC1 BZ B1C    1, C1B ZB1 CA а второй раз для треугольника B1BC и секущей AA1: B1Z BA1 CA    1. ZB A1C AB1 Перемножив два этих отношения, проведя необходимые сокращения получим соотношение, содержащееся в утверждении теоремы. Теорема 4. (Обратная теорема Чевы). Если для выбранных на сторонах треугольника ABC или их продолжениях точек A1, В1 и C1 выполняется условие Чевы: BA1 CB1 AC1   1 CA1 AB1 BC1 , то прямые AA1, BB1 и CC1 пересекаются в одной точке. Доказательство этой теоремы проводится методом от противного, также, как доказательство теоремы Менелая. Рассмотрим примеры применения прямой и обратной теорем Чевы. Пример 3. Докажите, что медианы треугольника пересекаются в одной точке. Решение. Рассмотрим соотношение AC1 BA1 CB1   C1B A1C B1 A для вершин треугольника и середин его сторон. Очевидно, что в каждой дроби в числителе и знаменателе стоят равные отрезки, поэтому все эти дроби равны единице. Следовательно, выполнено соотношение Чевы, поэтому, по обратной теореме, медианы пересекаются в одной точке. Задачи для самостоятельного решения Предлагаемые здесь задачи являются контрольной работой №1 для учащихся 9 классов. Решите эти задачи, запишите решения в отдельную (от физики и информатики) тетрадь. Укажите на обложке следующую информацию о себе: 1. Фамилия, имя, класс, профиль класса (например: Пупкин Василий,9 кл., математический) 2. Индекс, адрес места жительства, электронная почта (если есть), телефон (домашний или мобильный) 3. Данные о школе (например: МБОУ №1 п. Бикин) 4. Фамилия, И. О. учителя математики (например: учитель математики Петрова М.И.) Рекомендуется решить не менее четырех задач. М 9.1.1. Может ли секущая прямая из теоремы Менелая разрезать стороны треугольника (или их продолжения) на отрезки длиной: а) 3, 3, 5, 7,10, 14; в) 3, 5, 6, 7, 7, 10, Если такие варианты возможны, приведите примеры. Отрезки могут идти в разном порядке. М 9.1.2. Могут ли внутренние чевианы треугольника делить его стороны на отрезки: а) 3, 3, 5, 7,10, 14; в) 3, 5, 6, 7, 7, 10, Если такие варианты возможны, приведите примеры. Отрезки могут идти в разном порядке. Указание: придумывая примеры не забудьте проверить неваенство треугольника. М 9.1.3. Используя обратную теорему Чевы докажите, что: а) биссектрисы треугольника пересекаются в одной точке; б) отрезки, соединяющие вершины треугольника с точками на противоположных сторонах, в которых эти стороны касаются вписанной окружности, пересекаются в одной точке. Указания: а) вспомните, в каком отношении биссектриса делит противоположную сторону; б) используйте свойство, что отрезки двух касательных, проведенные из одной точки к некоторой окружности, равны. М 9.1.4. Завершите доказательство теоремы Менелая, начатое в первой части статьи. М 9.1.5. Докажите, что высоты треугольника пересекаются в одной точке, используя обратную теорему Чевы. М 9.1.6. Докажите теорему Симпсона: из произвольной точки M, взятой на описанной вокруг треугольника ABC окружности, на стороны или продолжения сторон треугольника опущены перпендикуляры, докажите, что основания этих перпендикуляров лежат на одной прямой. Указание: используйте обратную теорему Менелая. Попробуйте выразить длины отрезков, используемых в отношениях, через длины перпендикуляров, проведенных их точки M. Также полезно вспомнить свойства углов вписанного четырехугольника.

Класс: 9

Цели урока:

  1. обобщить, расширить и систематизировать знания и умения учащихся; научить использовать знания при решении сложных задач;
  2. способствовать развитию навыков самостоятельного применения знаний при решении задач;
  3. развивать логическое мышление и математическую речь учащихся, умение анализировать, сравнивать и обобщать;
  4. воспитывать у учащихся уверенность в себе, трудолюбие; умение работать в коллективе.

Задачи урока:

  • Образовательная: повторить теоремы Менелая и Чевы; применить их при решении задач.
  • Развивающая: учить выдвигать гипотезу и умело доказательно отстаивать свое мнение; проверить умение обобщать и систематизировать свои знания.
  • Воспитательная: повысить интерес к предмету и подготовить к решению более сложных задач.

Тип урока: урок обобщения и систематизации знаний.

Оборудование: карточки для коллективной работы на уроке по данной теме, индивидуальные карточки для самостоятельной работы, компьютер, мультимедийный проектор, экран.

Ход урока

I этап. Организационный момент (1 мин.)

Учитель сообщает тему и цель урока.

II этап. Актуализация опорных знаний и умений (10 мин.)

Учитель: На уроке вспомним теоремы Менелая и Чевы для того, чтобы успешно перейти к решению задач. Давайте вместе с вами посмотрим на экран, где представлен. Для какой теоремы дан этот рисунок? (теорема Менелая). Постарайтесь четко сформулировать теорему.

Рисунок 1

Пусть точка A 1 лежит на стороне BC треугольника АВС, точка C 1 – на стороне AB, точка B 1 – на продолжении стороны АС за точку С. Точки A 1 , B 1 и C 1 лежат на одной прямой тогда и только тогда, когда выполняется равенство

Учитель: Давайте вместе рассмотрим следующий рисунок. Сформулируйте теорему для этого рисунка.


Рисунок 2

Прямая AD пересекает две стороны и продолжение третьей стороны треугольника ВМС.

По теореме Менелая

Прямая МВ пересекает две стороны и продолжение третьей стороны треугольника АDС.

По теореме Менелая

Учитель: Какой теореме соответствует рисунок? (теорема Чевы). Сформулируйте теорему.


Рисунок 3

Пусть в треугольнике АВС точка A 1 лежит на стороне ВС, точка B 1 – на стороне АС, точка C 1 – на стороне АВ. Отрезки AA 1 , BB 1 и CC 1 пересекаются в одной точке тогда и только тогда, когда выполняется равенство

III этап. Решение задач. (22 мин.)

Класс разбивается на 3 команды, каждая получает карточку с двумя различными задачами. Дается время на решение, затем на экране появляются <Рисунки 4-9>. По готовым чертежам к задачам представители команд поочередно объясняют свое решение. После каждого объяснения следует обсуждение, ответы на вопросы и проверка правильности решения на экране. В обсуждении принимают участие все члены команд. Чем активнее команда, тем выше она оценивается при подведении итогов.

Карточка 1.

1. В треугольнике АВС на стороне ВС взята точка N так, что NC = 3BN; на продолжении стороны АС за точку А взята точка М так, что МА = АС. Прямая MN пересекает сторону АВ в точке F. Найдите отношение

2. Докажите, что медианы треугольника пересекаются в одной точке.

Решение 1


Рисунок 4

По условию задачи МА = АС, NC = 3BN. ПустьMA = AC =b, BN = k, NC = 3k. Прямая MNпересекает две стороны треугольника АВС и продолжение третьей.

По теореме Менелая

Ответ:

Доказательство 2


Рисунок 5

Пусть AM 1 , BM 2 , СM 3 – медианы треугольника АВС. Чтобы доказать, что эти отрезки пересекаются в одной точке, достаточно показать, что

Тогда по теореме Чевы (обратной) отрезки AM 1 , BM 2 и СM 3 пересекаются в одной точке.

Имеем:

Итак, доказано, что медианы треугольника пересекаются в одной точке.

Карточка 2.

1. На стороне PQтреугольника PQR взята точка N, а на стороне PR – точка L, причем NQ = LR. Точка пересечения отрезков QL и NR делит QL в отношении m:n, считая от точки Q. Найдите

2. Докажите, что биссектрисы треугольника пересекаются в одной точке.

Решение 1


Рисунок 6

По условию NQ = LR, ПустьNA = LR =a, QF = km, LF = kn. Прямая NR пересекает две стороны треугольника PQL и продолжение третьей.

По теореме Менелая

Ответ:

Доказательство 2


Рисунок 7

Покажем, что

Тогда по теореме Чевы (обратной) AL 1 , BL 2 , CL 3 пересекаются в одной точке. По свойству биссектрис треугольника

Перемножая почленно полученные равенства, получаем

Для биссектрис треугольника равенство Чевы выполняется, следовательно, они пересекаются в одной точке.

Карточка 3.

1. В треугольнике АВС AD – медиана, точка O – середина медианы. Прямая ВО пересекает сторону АС в точке К. В каком отношении точка К делит АС, считая от точки А?

2. Докажите, если в треугольник вписана окружность, то отрезки, соединяющие вершины треугольника с точками касания противоположных сторон, пересекаются в одной точке.

Решение 1


Рисунок 8

Пусть BD = DC = a, AO = OD = m. Прямая ВК пересекает две стороны и продолжение третьей стороны треугольника ADC.

По теореме Менелая

Ответ:

Доказательство 2


Рисунок 9

Пусть A 1 , B 1 и C 1 – точки касания вписанной окружности треугольника АВС. Для того чтобы доказать, что отрезки AA 1 , BB 1 и CC 1 пересекаются в одной точке, достаточно показать, что выполняется равенство Чевы:

Используя свойство касательных, проведенных к окружности из одной точки, введем обозначения: C 1 B = BA 1 = x, AC 1 = CB 1 = y, BA 1 = AC 1 = z.

Равенство Чевы выполняется, значит, биссектрисы треугольника пересекаются в одной точке.

IV этап. Решение задач (самостоятельная работа) (8 мин.)

Учитель: Работа команд закончена и сейчас приступим к самостоятельной работе по индивидуальным карточкам для 2-х вариантов.

Материалы к уроку для самостоятельной работы учащихся

Вариант 1. В треугольнике АВС, площадь которого равна 6, на стороне AB взята точка К, делящая эту сторону в отношении АК:BK = 2:3, а на стороне АС – точка L, делящая АС в отношении AL:LC = 5:3. Точка Qпересечения прямых СК и BL удалена от прямой AB на расстоянии . Найдите длину стороны АВ. (Ответ: 4.)

Вариант 2. На стороне АС в треугольнике АВС взята точка К. АК = 1, КС = 3. На стороне АВ взята точка L. AL:LВ = 2:3, Q – точка пересечения прямых ВК и СL. Найдите длину высоты треугольника АВС, опущенной из вершины В. (Ответ: 1,5.)

Работы сдаются учителю для проверки.

V этап. Итог урока (2 мин.)

Анализируются допущенные ошибки, отмечаются оригинальные ответы и замечания. Подводятся итоги работы каждой команды и выставляются оценки.

VI этап. Домашнее задание (1 мин.)

Домашнее задание составлено из задач №11, 12 стр. 289-290, №10 стр. 301 .

Заключительное слово учителя (1 мин).

Сегодня вы услышали со стороны математическую речь друг друга и оценили свои возможности. В дальнейшем, будем применять такие обсуждения для большего понимания предмета. Аргументы на уроке дружили с фактами, а теория с практикой. Вам всем спасибо.

Литература:

  1. Ткачук В.В. Математика абитуриенту. – М.: МЦНМО, 2005.

Класс: 9

Цели урока:

  1. обобщить, расширить и систематизировать знания и умения учащихся; научить использовать знания при решении сложных задач;
  2. способствовать развитию навыков самостоятельного применения знаний при решении задач;
  3. развивать логическое мышление и математическую речь учащихся, умение анализировать, сравнивать и обобщать;
  4. воспитывать у учащихся уверенность в себе, трудолюбие; умение работать в коллективе.

Задачи урока:

  • Образовательная: повторить теоремы Менелая и Чевы; применить их при решении задач.
  • Развивающая: учить выдвигать гипотезу и умело доказательно отстаивать свое мнение; проверить умение обобщать и систематизировать свои знания.
  • Воспитательная: повысить интерес к предмету и подготовить к решению более сложных задач.

Тип урока: урок обобщения и систематизации знаний.

Оборудование: карточки для коллективной работы на уроке по данной теме, индивидуальные карточки для самостоятельной работы, компьютер, мультимедийный проектор, экран.

Ход урока

I этап. Организационный момент (1 мин.)

Учитель сообщает тему и цель урока.

II этап. Актуализация опорных знаний и умений (10 мин.)

Учитель: На уроке вспомним теоремы Менелая и Чевы для того, чтобы успешно перейти к решению задач. Давайте вместе с вами посмотрим на экран, где представлен. Для какой теоремы дан этот рисунок? (теорема Менелая). Постарайтесь четко сформулировать теорему.

Рисунок 1

Пусть точка A 1 лежит на стороне BC треугольника АВС, точка C 1 – на стороне AB, точка B 1 – на продолжении стороны АС за точку С. Точки A 1 , B 1 и C 1 лежат на одной прямой тогда и только тогда, когда выполняется равенство

Учитель: Давайте вместе рассмотрим следующий рисунок. Сформулируйте теорему для этого рисунка.


Рисунок 2

Прямая AD пересекает две стороны и продолжение третьей стороны треугольника ВМС.

По теореме Менелая

Прямая МВ пересекает две стороны и продолжение третьей стороны треугольника АDС.

По теореме Менелая

Учитель: Какой теореме соответствует рисунок? (теорема Чевы). Сформулируйте теорему.


Рисунок 3

Пусть в треугольнике АВС точка A 1 лежит на стороне ВС, точка B 1 – на стороне АС, точка C 1 – на стороне АВ. Отрезки AA 1 , BB 1 и CC 1 пересекаются в одной точке тогда и только тогда, когда выполняется равенство

III этап. Решение задач. (22 мин.)

Класс разбивается на 3 команды, каждая получает карточку с двумя различными задачами. Дается время на решение, затем на экране появляются <Рисунки 4-9>. По готовым чертежам к задачам представители команд поочередно объясняют свое решение. После каждого объяснения следует обсуждение, ответы на вопросы и проверка правильности решения на экране. В обсуждении принимают участие все члены команд. Чем активнее команда, тем выше она оценивается при подведении итогов.

Карточка 1.

1. В треугольнике АВС на стороне ВС взята точка N так, что NC = 3BN; на продолжении стороны АС за точку А взята точка М так, что МА = АС. Прямая MN пересекает сторону АВ в точке F. Найдите отношение

2. Докажите, что медианы треугольника пересекаются в одной точке.

Решение 1


Рисунок 4

По условию задачи МА = АС, NC = 3BN. ПустьMA = AC =b, BN = k, NC = 3k. Прямая MNпересекает две стороны треугольника АВС и продолжение третьей.

По теореме Менелая

Ответ:

Доказательство 2


Рисунок 5

Пусть AM 1 , BM 2 , СM 3 – медианы треугольника АВС. Чтобы доказать, что эти отрезки пересекаются в одной точке, достаточно показать, что

Тогда по теореме Чевы (обратной) отрезки AM 1 , BM 2 и СM 3 пересекаются в одной точке.

Имеем:

Итак, доказано, что медианы треугольника пересекаются в одной точке.

Карточка 2.

1. На стороне PQтреугольника PQR взята точка N, а на стороне PR – точка L, причем NQ = LR. Точка пересечения отрезков QL и NR делит QL в отношении m:n, считая от точки Q. Найдите

2. Докажите, что биссектрисы треугольника пересекаются в одной точке.

Решение 1


Рисунок 6

По условию NQ = LR, ПустьNA = LR =a, QF = km, LF = kn. Прямая NR пересекает две стороны треугольника PQL и продолжение третьей.

По теореме Менелая

Ответ:

Доказательство 2


Рисунок 7

Покажем, что

Тогда по теореме Чевы (обратной) AL 1 , BL 2 , CL 3 пересекаются в одной точке. По свойству биссектрис треугольника

Перемножая почленно полученные равенства, получаем

Для биссектрис треугольника равенство Чевы выполняется, следовательно, они пересекаются в одной точке.

Карточка 3.

1. В треугольнике АВС AD – медиана, точка O – середина медианы. Прямая ВО пересекает сторону АС в точке К. В каком отношении точка К делит АС, считая от точки А?

2. Докажите, если в треугольник вписана окружность, то отрезки, соединяющие вершины треугольника с точками касания противоположных сторон, пересекаются в одной точке.

Решение 1


Рисунок 8

Пусть BD = DC = a, AO = OD = m. Прямая ВК пересекает две стороны и продолжение третьей стороны треугольника ADC.

По теореме Менелая

Ответ:

Доказательство 2


Рисунок 9

Пусть A 1 , B 1 и C 1 – точки касания вписанной окружности треугольника АВС. Для того чтобы доказать, что отрезки AA 1 , BB 1 и CC 1 пересекаются в одной точке, достаточно показать, что выполняется равенство Чевы:

Используя свойство касательных, проведенных к окружности из одной точки, введем обозначения: C 1 B = BA 1 = x, AC 1 = CB 1 = y, BA 1 = AC 1 = z.

Равенство Чевы выполняется, значит, биссектрисы треугольника пересекаются в одной точке.

IV этап. Решение задач (самостоятельная работа) (8 мин.)

Учитель: Работа команд закончена и сейчас приступим к самостоятельной работе по индивидуальным карточкам для 2-х вариантов.

Материалы к уроку для самостоятельной работы учащихся

Вариант 1. В треугольнике АВС, площадь которого равна 6, на стороне AB взята точка К, делящая эту сторону в отношении АК:BK = 2:3, а на стороне АС – точка L, делящая АС в отношении AL:LC = 5:3. Точка Qпересечения прямых СК и BL удалена от прямой AB на расстоянии . Найдите длину стороны АВ. (Ответ: 4.)

Вариант 2. На стороне АС в треугольнике АВС взята точка К. АК = 1, КС = 3. На стороне АВ взята точка L. AL:LВ = 2:3, Q – точка пересечения прямых ВК и СL. Найдите длину высоты треугольника АВС, опущенной из вершины В. (Ответ: 1,5.)

Работы сдаются учителю для проверки.

V этап. Итог урока (2 мин.)

Анализируются допущенные ошибки, отмечаются оригинальные ответы и замечания. Подводятся итоги работы каждой команды и выставляются оценки.

VI этап. Домашнее задание (1 мин.)

Домашнее задание составлено из задач №11, 12 стр. 289-290, №10 стр. 301 .

Заключительное слово учителя (1 мин).

Сегодня вы услышали со стороны математическую речь друг друга и оценили свои возможности. В дальнейшем, будем применять такие обсуждения для большего понимания предмета. Аргументы на уроке дружили с фактами, а теория с практикой. Вам всем спасибо.

Литература:

  1. Ткачук В.В. Математика абитуриенту. – М.: МЦНМО, 2005.