Кирпич. Облицовка камнем. Мокрый фасад. Фасадные панели. Дизайн и декор

Кирпич. Облицовка камнем. Мокрый фасад. Фасадные панели. Дизайн и декор

» » Какая формулировка периодического закона является современной. Успехи современного естествознания

Какая формулировка периодического закона является современной. Успехи современного естествознания

Данные о строении ядра и о распределении электронов в атомах позволяют рассмотреть периодический закон и периодическую систему элементов с фундаментальных физических позиций. На базе современных представлений периодический закон формулируется так:


Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядра атома (порядкового номера).

Периодическая таблица Д.И. Менделеева

В настоящее время известно более 500 вариантов изображения периодической системы: это различные формы передачи периодического закона.


Первым вариантом системы элементов, предложенным Д.И.Менделеевым 1 марта 1869 г., был так называемый вариант длинной формы. В этом варианте периоды располагались одной строкой.



В периодической системе по горизонтали имеется 7 периодов, из них первые три называются малыми, а остальные - большими. В первом периоде находится 2 элемента, во втором и третьем - по 8, в четвертом и пятом - по 18, в шестом - 32, в седьмом (незавершенном) - 21 элемент. Каждый период, за исключением первого, начинается щелочным металлом и заканчивается благородным газом (7-й период - незаконченный).


Все элементы периодической системы пронумерованы в том порядке, в каком они следуют друг за другом. Номера элементов называются порядковыми или атомными номерами.


В системе 10 рядов. Каждый малый период состоит из одного ряда, каждый большой период - из двух рядов: четного (верхнего) и нечетного (нижнего). В четных рядах больших периодов (четвертом, шестом, восьмом и десятом) находятся одни металлы, и свойства элементов в ряду слева направо изменяются слабо. В нечетных рядах больших периодов (пятого, седьмого и девятого) свойства элементов в ряду слева направо изменяются, как у типических элементов.


Основным признаком, по которому элементы больших периодов разделены на два ряда, является их степень окисления. Их одинаковые значения дважды повторяются в периоде с ростом атомных масс элементов. Например, в четвертом периоде степени окисления элементов от К до Mn изменяются от +1 до +7, затем следует триада Fe, Со, Ni (это элементы четного ряда), после чего наблюдается такое же возрастание степеней окисления у элементов от Cu до Br (это элементы нечетного ряда). То же мы видим в остальных больших периодах, исключая седьмой, который состоит из одного (четного) ряда. Дважды повторяются в больших периодах и формы соединений элементов.


В шестом периоде вслед за лантаном располагаются 14 элементов с порядковыми номерами 58-71, называемых лантаноидами (слово "лантаноиды" означает подобные лантану", а "актиноиды" - "подобные актинию"). Иногда их называют лантанидами и актинидами, что означает следующие за лантаном, следующие за актинием). Лантаноиды помещены отдельно внизу таблицы, а в клетке звездочкой указано на последовательность их расположения в системе: La-Lu. Химические свойства лантаноидов очень сходны. Например, все они являются реакционно-способными металлами, реагируют с водой с образованием гидроксида и водорода. Из этого следует, что у лантаноидов сильно выражена горизонтальная аналогия.


В седьмом периоде 14 элементов с порядковыми номерами 90-103 составляют семейство актиноидов. Их также помещают отдельно - под лантаноидами, а в соответствующей клетке двумя звездочками указано на последовательность их расположения в системе: Ас-Lr. Однако в отличие от лантаноидов горизонтальная аналогия у актиноидов выражена слабо. Они в своих соединениях проявляют больше различных степеней окисления. Например, степень окисления актиния +3, а урана +3, +4, +5 и +6. Изучение химических свойств актиноидов крайне сложно вследствие неустойчивости их ядер.


В периодической системе по вертикали расположены восемь групп (обозначены римскими цифрами). Номер группы связан со степенью окисления элементов, проявляемой ими в соединениях. Как правило, высшая положительная степень окисления элементов равна номеру группы. Исключением являются фтор - его степень окисления равна -1; медь, серебро, золото проявляют степень окисления +1, +2 и +3; из элементов VIII группы степень окисления +8 известна только для осмия, рутения и ксенона.


В VIII группе размещены благородные газы. Ранее считалось, что они не способны образовывать химические соединения.


Каждая группа делится на две подгруппы - главную и побочную, что в периодической системе подчеркивается смещением одних вправо, а других влево. Главную подгруппу составляют типические элементы (элементы второго и третьего периодов) и сходные с ними по химическим свойствам элементы больших периодов. Побочную подгруппу составляют только металлы - элементы больших периодов. VIII группа отличается от остальных. Кроме главной подгруппы гелия она содержит три побочные подгруппы: подгруппу железа,подгруппу кобальта и подгруппу никеля.


Химические свойства элементов главных и побочных подгрупп значительно различаются. Например, в VII группе главную подгруппу составляют неметаллы F, СI, Вг, I, Аt, побочную - металлы Мn, Тc, Rе. Таким образом, подгруппы объединяют наиболее сходные между собой элементы.


Все элементы, кроме гелия, неона и аргона, образуют кислородные соединения; существует всего 8 форм кислородных соединений. В периодической системе их часто изображают общими формулами, расположенными под каждой группой в порядке возрастания степени окисления элементов: R 2 O, RО, R 2 O 3 , RO 2 , R 2 O 5 , RО 3 ,R 2 O 7 , RO 4 , где R - элемент данной группы. Формулы высших оксидов относятся ко всем элементам группы (главной и побочной), кроме тех случаев, когда элементы не проявляют степени окисления, равной номеру группы.


Элементы главных подгрупп, начиная с IV группы, образуют газообразные водородные соединения, форм таких соединений 4. Их также изображают общими формулами в последовательности RН 4 , RН 3 , RН 2 , RН. Формулы водородных соединений располагаются под элементами главных подгрупп и только к ним относятся.


Свойства элементов в подгруппах закономерно изменяются: сверху вниз усиливаются металлические свойства и ослабевают неметаллические. Очевидно, металлические свойства наиболее сильно выражены у франция, затем у цезия; неметаллические - у фтора, затем - у кислорода.


Наглядно проследить периодичность свойств элементов можно и исходя из рассмотрения электронных конфигураций атомов.

Число электронов, находящихся на внешнем уровне в атомах элементов, располагающихся в порядке увеличения порядкового номера, периодически повторяется. Периодическое изменение свойств элементов с увеличением порядкового номера объясняется периодическим изменением строения их атомов, а именно числом электронов на их внешних энергетических уровнях. По числу энергетических уровней в электронной оболочке атома элементы делятся на семь периодов. Первый период состоит из атомов, в которых электронная оболочка состоит из одного энергетического уровня, во втором периоде - из двух, в третьем - из трех, в четвертом - из четырех и т. д. Каждый новый период начинается тогда, когда начинает заполняться новый энергетический уровень.


В периодической системе каждый период начинается элементами, атомы которых на внешнем уровне имеют один электрон, - атомами щелочных металлов - и заканчивается элементами, атомы которых на внешнем Уровне имеют 2 (в первом периоде) или 8 электронов (во всех последующих) - атомами благородных газов.


Далее мы видим, что внешние электронные оболочки сходны у атомов элементов (Li, Na, К, Rb, Cs); (Ве, Mg, Са, Sr); (F, Сl, Вг, I); (Не,Nе, Аг, Kr, Хе) и т. д. Именно поэтому каждая из вышеприведенных групп элементов оказывается в определенной главной подгруппе периодической таблицы:Li, Na, К, Rb, Cs в I группе, F, Сl, Вг, I - в VII и т. д.


Именно вследствие сходства строения электронных оболочек атомов сходны их физические и химические свойства.


Число главных подгрупп определяется максимальным числом элементов на энергетическом уровне и равно 8. Число переходных элементов (элементов побочных подгрупп) определяется максимальным числом электронов на d-подуровне и равно 10 в каждом из больших периодов.


Поскольку в периодической системе химических элементов Д.И. Менделеева одна из побочных подгрупп содержит сразу три переходных элемента,близких по химическим свойствам (так называемые триады Fe-Со-Ni, Ru-Rh-Pd,Os-Ir-Pt), то число побочных подгрупп, так же как и главных, равно 8.


По аналогии с переходными элементами число лантаноидов и актиноидов, вынесенных внизу периодической системы в виде самостоятельных рядов, равно максимальному числу электронов на f-подуровне, т. е. 14.


Период начинается элементом, в атоме которого на внешнем уровне находится один s-электрон: в первом периоде это водород, в остальных - щелочные металлы. Завершается период благородным газом: первый - гелием (1s 2),остальные периоды - элементами, атомы которых на внешнем уровне имеют электронную конфигурацию ns 2 np 6 .


Первый период содержит два элемента: водород (Z = 1) и гелий (Z = 2). Второй период начинается элементом литием (Z = 3) и завершается неоном (Z = 10). Во втором периоде восемь элементов. Третий период начинается с натрия (Z = 11), электронная конфигурация которого 1s 2 2s 2 2p 6 3s 1 .С него началось заполнение третьего энергетического уровня. Завершается оно у инертного газа аргона (Z = 18), Зs- и 3p-подуровни которого полностью заполнены. Электронная формула аргона: 1s 2 2s 2 2p 6 Зs 2 3p 6 . Натрий - аналог лития, аргон - неона. В третьем периоде, как и во втором,восемь элементов.


Четвертый период начинается калием (Z = 19), электронное строение которого выражается формулой 1s 2 2s 2 2p 6 3s 2 3p64s 1 . Его 19-й электрон занял 4s-подуровень, энергия которого ниже энергии Зd-подуровня. Внешний 4s-электрон придает элементу свойства, сходные со свойствами натрия. У кальция (Z = 20) 4s-подуровень заполнен двумя электронами: 1s 2 2s 2 2p 6 3s 2 3р 6 4s 2 .С элемента скандия (Z = 21) начинается заполнение Зd-подуровня, так как он энергетически более выгоден, чем 4р-подуровень. Пять орбиталей 3d-подуровнямогут быть заняты десятью электронами, что осуществляется у атомов от скандия до цинка (Z = 30). Поэтому электронное строение Sc соответствует формуле 1s 2 2s 2 2p 6 3s 2 3p 6 3d 1 4s 2 ,а цинка - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 .В атомах последующих элементов вплоть до инертного газа криптона (Z = 36) идет заполнение 4p-подуровня. В четвертом периоде 18 элементов.


Пятый период содержит элементы от рубидия (Z = 37) до инертного газа ксенона (Z = 54). Заполнение их энергетических уровней идет также, как у элементов четвертого периода: после Rb и Sr у десяти элементов от иттрия (Z = 39) до кадмия (Z = 48) заполняется 4d-подуровень, после чего электроны занимают 5p-подуровень. В пятом периоде как и в четвертом, 18 элементов.


В атомах элементов шестого периода цезия (Z = 55) и бария (Z = 56) заполняется 6s-подуровень. У лантана (Z = 57) один электрон поступает на 5d-подуровень, после чего заполнение этого подуровня приостанавливается, а начинает заполняться 4f-подуровень, семь орбиталей которого могут быть заняты 14 электронами. Это происходит у атомов элементов лантаноидов с Z = 58 - 71. Поскольку у этих элементов заполняется глубинный 4f-подуровеиь третьего снаружи уровня, они обладают весьма близкими химическими свойствами. С гафния (Z = 72) возобновляется заполнение d-подуровня и заканчивается у ртути (Z = 80), после чего электроны заполняют 6p-подуровень. Заполнение уровня завершается у благородного газа радона (Z = 86). В шестом периоде 32 элемента.


Седьмой период - незавершенный. Заполнение электронами электронных уровней аналогично шестому периоду. После заполнения 7s-подуровня у Франция (Z = 87) и радия(Z = 88) электрон актиния поступает на 6d-подуровень, после которого начинает заполняться 5f-подуровень 14 электронами. Это происходит у атомов элементов актиноидов с Z = 90 - 103. После103-го элемента идет заполнение б d-подуровня: у курчатовия (Z = 104), нильсбория (Z = 105), элементов Z = 106 и Z = 107. Актиноиды, как и лантаноиды, обладают многими сходными химическими свойствами.


Хотя 3 d-подуровень заполняется после 4s-подуровня, в формуле он ставится раньше, так как последовательно записываются все подуровни данного уровня.


В зависимости от того, какой подуровень последним заполняется электронами, все элементы делят на четыре типа (семейства).


1. s - Элементы: заполняется электронами s-подуровень внешнего уровня. К ним относятся первые два элемента каждого периода.


2. р - Элементы: заполняется электронами р-подуровень внешнего уровня. Это последние 6 элементов каждого периода (кроме первого и седьмого).


3. d - Элементы: заполняется электронами d-подуровень второго снаружи уровня, а на внешнем уровне остается один или два электрона (у Pd - ноль). К ним относятся элементы вставных декад больших периодов,расположенных между s- и р-элементами (их также называют переходными элементами).


4. f - Элементы: заполняется электронами f-подуровень третьего снаружи уровня, а на внешнем уровне остается два электрона. Это лантаноиды и актиноиды.


В периодической системе s-элементов 14, р-элементов 30, d-элементов 35, f-элементов 28. Элементы одного типа имеют ряд общих химических свойств.


Периодическая система Д. И. Менделеева является естественной классификацией химических элементов по электроны структуре их атомов. Об электронной структуре атома, а значит, и свойствах элемента судят по положению элемента в соответствующем периоде и подгруппе периодической системы. Закономерностями заполнения электронных уровней объясняется различное число элементов в периодах.


Таким образом, строгая периодичность расположения элементов в периодической системе химических элементов Д. И. Менделеева полностью объясняется последовательным характером заполнения энергетических уровней.

Выводы:

Теория строения атомов объясняет периодическое изменение свойств элементов. Возрастание положительных зарядов атомных ядер от 1 до 107 обусловливает периодическое повторение строения внешнего энергетического уровня. А поскольку свойства элементов в основном зависят от числа электронов на внешнем уровне, то и они периодически повторяются. В этом - физический смысл периодического закона.


В малых периодах с ростом положительного заряда ядер атомов возрастает число электронов на внешнем уровне (от 1 до 2 - в первом периоде, и от 1 до 8 - во втором и третьем периодах), что объясняет изменение свойств элементов: в начале периода (кроме первого периода) находится щелочной металл, затем металлические свойства постепенно ослабевают и усиливаются свойства неметаллические.


В больших периодах с ростом заряда ядер заполнение уровней электронами происходит сложнее, что объясняет и более сложное изменение свойств элементов по сравнению с элементами малых периодов. Так, в четных рядах больших периодов с ростом заряда число электронов на внешнем уровне остается постоянным и равно 2 или 1. Поэтому, пока идет заполнение электронами следующего за внешним (второго снаружи) уровня, свойства элементов в этих рядах изменяются крайне медленно. Лишь в нечетных рядах, когда с ростом заряда ядра увеличивается число электронов на внешнем уровне (от 1 до 8), свойства элементов начинают изменяться так же, как у типических.


В свете учения о строении атомов становится обоснованным разделение Д.И. Менделеевым всех элементов на семь периодов. Номер периода соответствует числу энергетических уровней атомов, заполняемых электронами.Поэтому s-элементы имеются во всех периодах, р-элементы - во втором и последующих, d-элементы - в четвертом и последующих и f-элементы - в шестом и седьмом периодах.


Легко объяснимо и деление групп на подгруппы, основанное на различии в заполнении электронами энергетических уровней. У элементов главных подгрупп заполняются или s-подуровни (это s-элементы), или р-подуровни (это р-элементы) внешних уровней. У элементов побочных подгрупп заполняется (d-подуровень второго снаружи уровня (это d-элементы). У лантаноидов и актиноидов заполняются соответственно 4f- и 5f-подуровни (это f-элементы). Таким образом, в каждой подгруппе объединены элементы, атомы которых имеют сходное строение внешнего электронного уровня. При этом атомы элементов главных подгрупп содержат на внешних уровнях число электронов, равное номеру группы. В побочные же подгруппы входят элементы, атомы которых имеют на внешнем уровне по два или по одному электрону.


Различия в строении обусловливают и различия в свойствах элементов разных подгрупп одной группы. Так, на внешнем уровне атомов элементов подгруппы галогенов имеется по семь электронов подгруппы марганца - по два электрона. Первые - типичные металлы, а вторые - металлы.


Но у элементов этих подгрупп есть и общие свойства: вступая в химические реакции, все они (за исключением фтора F) могут отдавать по 7 электронов на образование химических связей. При этом атомы подгруппы марганца отдают 2 электрона с внешнего и 5 электронов со следующего за ним уровня. Таким образом, у элементов побочных подгрупп валентными являются электроны не только внешних, но и предпоследних (вторых снаружи) уровней в чем состоит основное различие в свойствах элементов главных и побочных подгрупп.


Отсюда же следует, что номер группы, как правило, указывает число электронов, которые могут участвовать в образовании химических связей. В этом - физический смысл номера группы.


Итак, строение атомов обусловливает две закономерности:


1) изменение свойств элементов по горизонтали - в периоде слева право ослабляются металлические и усиливаются неметаллические свойства;


2) изменение свойств элементов по вертикали - в подгруппе с ростом порядкового номера усиливаются металлические свойства и ослабевают неметаллические.


В таком случае элемент (и клетка системы) находится на пересечении горизонтали и вертикали,что определяет его свойства. Это помогает находить и описывать свойства элементов, изотопы которых получают искусственным путем.

Периодический закон химических элементов - фундаментальный закон природы, отражающий периодическое изменение свойств химических элементов по мере увеличения зарядов ядер их атомов. Открыт 1 марта (17 февраля по ст. стилю) 1869 г. Д.И. Менделеевым. В этот день им была составлена таблица, названная «Опыт системы элементов, основанной на их атомном весе и химическом сходстве». Окончательная формулировка периодического закона была дана Менделеевым в июле 1871 г. Она гласила:

«Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса ».

Менделеевская формулировка периодического закона просуществовала в науке 40 с небольшим лет. Она была пересмотрена благодаря выдающимся достижениям физики, главным образом разработке ядерной модели атома (см. Атом). Оказалось, заряд ядра атома (Z) численно равен порядковому номеру соответствующего элемента в периодической системе, а заполнение электронных оболочек и подоболочек атомов в зависимости от Z происходит таким образом, что сходные электронные конфигурации атомов периодически повторяются (см. Периодическая система химических элементов). Поэтому современная формулировка периодического закона такова: свойства элементов, простых веществ и их соединений находятся в периодической зависимости от зарядов ядер атомов.
В отличие от других фундаментальных законов природы, например таких, как закон всемирного тяготения или закон эквивалентности массы и энергии, периодический закон не может быть записан в виде какого-либо общего уравнения или формулы. Его наглядным отражением является периодическая система элементов. Однако и сам Менделеев, и другие ученые делали попытки отыскать математическое уравнение периодического закона химических элементов . Эти попытки увенчались успехом только после разработки теории строения атома. Но они касаются лишь установления количественной зависимости порядка распределения электронов в оболочках и подоболочках от зарядов ядер атомов.
Так, путем решения уравнения Шредингера можно рассчитать, как распределяются электроны в атомах с различными значениями Z. И поэтому основное уравнение квантовой механики как бы является одним из количественных выражений периодического закона.
Или, например, другое уравнение: Z„, = „+,Z - - (21 + 1)2 - >n,(2t + 1) +
1
+ т„где „+,Z = - (n + 1+ 1)" +
+(+1+ 1. 2к(п+О 1
2 2 6
Несмотря на свою громоздкость, оно не так уж и сложно. Буквы и, 1, т, и m,- это не что иное, как главное, орбитальное, магнитное и спиновое квантовые числа (см. Атом). Уравнение позволяет вычислить, при каком значении Z (порядкового номера элемента) в атоме появляется электрон, состояние которого описывается заданной комбинацией четырех квантовых чисел. Подставляя возможные сочетания и, 1, т, и т, в это уравнение, мы получаем набор различных значений Z. Если эти значения расположить в последовательности натурального ряда чисел 1, 2, 3, 4, 5, ..., то, в свою очередь, получается четкая схема построения электронных конфигураций атомов по мере роста Z. Таким образом, это уравнение - также своеобразное количественное выражение периодического закона. Попробуйте сами решить это уравнение для всех элементов периодической системы (как связаны между собой значения и, 1; m, и т„ вы узнаете из статьи Атом).


Периодический закон - это универсальный закон для всей Вселенной . Он имеет силу везде, где существуют атомы. Но периодически изменяются не только электронные структуры атомов. Строение и свойства атомных ядер также подчиняются своеобразному периодическому закону. В ядрах, состоящих из нейтронов и протонов, существуют нейтронные и протонные оболочки, заполнение которых имеет периодический характер. Известны даже попытки построения периодической системы атомных ядер.

С первых уроков химии вы использовали таблицу Д. И. Менделеева. Она наглядно демонстрирует, что все химические элементы, образующие вещества окружающего нас мира, взаимосвязаны и подчиняются общим закономерностям, т. е. представляют собой единое целое - систему химических элементов. Поэтому в современной науке таблицу Д. И. Менделеева называют Периодической системой химических элементов.

Почему «периодической», вам тоже понятно, так как общие закономерности в изменении свойств атомов, простых и сложных веществ, образованных химическими элементами, повторяются в этой системе через определённые интервалы - периоды. Некоторые из этих закономерностей, приведённые в таблице 1, вам уже известны.

Таким образом, все существующие в мире химические элементы подчиняются единому, объективно действующему в природе Периодическому закону, графическим отображением которого и является Периодическая система элементов. Этот закон и система носят имя великого русского химика Д. И. Менделеева.

Д. И. Менделеев пришёл к открытию Периодического закона, проведя сопоставление свойств и относительных атомных масс химических элементов. Для этого Д. И. Менделеев для каждого химического элемента на карточке записал: символ элемента, значение относительной атомной массы (во времена Д. И. Менделеева эту величину называли атомным весом), формулы и характер высшего оксида и гидроксида. Он расположил 63 известных к тому времени химических элемента в одну цепочку в порядке возрастания их относительных атомных масс (рис. 1) и проанализировал эту совокупность элементов, пытаясь найти в ней определённые закономерности. В результате напряжённого творческого труда он обнаружил, что в этой цепочке имеются интервалы - периоды, в которых свойства элементов и образованных ими веществ изменяются сходным образом (рис. 2).

Рис. 1.
Карточки элементов, расположенные в порядке увеличения их относительных атомных масс

Рис. 2.
Карточки элементов, расположенные в порядке периодического изменения свойств элементов и образованных ими веществ

Лабораторный опыт № 2
Моделирование построения Периодической системы Д. И. Менделеева

Смоделируйте построение Периодической системы Д. И. Менделеева. Для этого подготовьте 20 карточек размером 6 х 10 см для элементов с порядковыми номерами с 1-го по 20-й. На каждой карточке укажите следующие сведения об элементе: химический символ, название, относительную атомную массу, формулу высшего оксида, гидроксида (в скобках укажите их характер - основный, кислотный или амфотерный), формулу летучего водородного соединения (для неметаллов).

Перемешайте карточки, а затем расположите их в ряд по возрастанию относительных атомных масс элементов. Сходные элементы с 1-го по 18-й расположите друг под другом: водород над литием и калий под натрием, соответственно, кальций под магнием, гелий под неоном. Сформулируйте выявленную вами закономерность в виде закона. Обратите внимание на несоответствие относительных атомных масс аргона и калия их расположению по общности свойств элементов. Объясните причину этого явления.

Перечислим ещё раз, используя современные термины, закономерные изменения свойств, проявляемые в пределах периодов:

  • металлические свойства ослабевают;
  • неметаллические свойства усиливаются;
  • степень окисления элементов в высших оксидах увеличивается от +1 до +8;
  • степень окисления элементов в летучих водородных соединениях увеличивается от -4 до -1;
  • оксиды от основных через амфотерные сменяются кислотными;
  • гидроксиды от щелочей через амфотерные гидроксиды сменяются кислородсодержащими кислотами.

На основании этих наблюдений Д. И. Менделеев в 1869 г. сделал вывод - сформулировал Периодический закон, который с использованием современных терминов звучит так:

Систематизируя химические элементы на основе их относительных атомных масс, Д. И. Менделеев уделял большое внимание также свойствам элементов и образованных ими веществ, распределяя элементы со сходными свойствами в вертикальные столбцы - группы. Иногда в нарушение выявленной им закономерности он ставил более тяжёлые элементы перед элементами с меньшими значениями относительных атомных масс. Например, он записал в свою таблицу кобальт перед никелем, теллур - перед иодом, а когда были открыты инертные (благородные) газы, аргон - перед калием. Такой порядок расположения Д. И. Менделеев считал необходимым потому, что иначе эти элементы попали бы в группы несходных с ними по свойствам элементов. Так, в частности, щелочной металл калий попал бы в группу инертных газов, а инертный газ аргон - в группу щелочных металлов.

Д. И. Менделеев не мог объяснить эти исключения из общего правила, как и причину периодичности в изменении свойств элементов и образованных ими веществ. Однако он предвидел, что эта причина кроется в сложном строении атома. Именно научная интуиция Д. И. Менделеева позволила ему построить систему химических элементов не в порядке возрастания их относительных атомных масс, а в порядке возрастания зарядов их атомных ядер. О том, что свойства элементов определяются именно зарядами их атомных ядер, красноречиво говорит существование изотопов, с которыми вы знакомились в прошлом году (вспомните, что это такое, приведите примеры известных вам изотопов).

В соответствии с современными представлениями о строении атома основой классификации химических элементов являются заряды их атомных ядер, и современная формулировка Периодического закона такова:

Периодичность в изменении свойств элементов и их соединений объясняется периодической повторяемостью в строении внешних энергетических уровней их атомов. Именно число энергетических уровней, общее число расположенных на них электронов и число электронов на внешнем уровне отражают принятую в Периодической системе символику, т. е. раскрывают физический смысл порядкового номера элемента, номера периода и номера группы (в чём он состоит?).

Строение атома позволяет объяснить и причины изменения металлических и неметаллических свойств элементов в периодах и группах.

Следовательно, Периодический закон и Периодическая система Д. И. Менделеева обобщают сведения о химических элементах и образованных ими веществах и объясняют периодичность в изменении их свойств и причину сходства свойств элементов одной и той же группы.

Эти два важнейших значения Периодического закона и Периодической системы Д. И. Менделеева дополняет ещё одно, которое заключается в возможности прогнозировать, т. е. предсказывать, описывать свойства и указывать пути открытия новых химических элементов. Уже на этапе создания Периодической системы Д. И. Менделеев сделал ряд прогнозов о свойствах ещё не известных в то время элементов и указал пути их открытия. В созданной им таблице Д. И. Менделеев для этих элементов оставил пустые клеточки (рис. 3).

Рис. 3.
Периодическая таблица элементов, предложенная Д. И. Менделеевым

Яркими примерами прогностической силы Периодического закона явились последующие открытия элементов: в 1875 г. французом Лекоком де Буабодраном был открыт галлий, предсказанный Д. И. Менделеевым пятью годами раньше как элемент под названием «экаалюминий» (эка - следующий за); в 1879 г. шведом Л. Нильсоном был открыт «экабор» по Д. И. Менделееву; в 1886 г. немцем К. Винклером - «экасилиций» по Д. И. Менделееву (определите по таблице Д. И. Менделеева современные названия этих элементов). Насколько точен был в своих предсказаниях Д. И. Менделеев, иллюстрируют данные таблицы 2.

Таблица 2
Предсказанные и экспериментально обнаруженные свойства германия

Предсказано Д. И. Менделеевым в 1871 г.

Установлено К. Винклером в 1886 г.

Относительная атомная масса близка к 72

Относительная атомная масса 72,6

Серый тугоплавкий металл

Серый тугоплавкий металл

Плотность металла около 5,5 г/см 3

Плотность металла 5,35 г/см 3

Формула оксида Э0 2

Формула оксида Ge0 2

Плотность оксида около 4,7 г/см 3

Плотность оксида 4,7 г/см 3

Оксид будет довольно легко восстанавливаться до металла

Оксид Ge0 2 восстанавливается до металла при нагревании в струе водорода

Хлорид ЭС1 4 должен быть жидкостью с температурой кипения около 90 °С и плотностью около 1,9 г/см 3

Хлорид германия (IV) GeCl 4 представляет собой жидкость с температурой кипения 83 °С и плотностью 1,887 г/см 3

Учёные-первооткрыватели новых элементов высоко оценили открытие русского учёного: «Вряд ли может существовать более яркое доказательство справедливости учения о периодичности элементов, чем открытие до сих пор гипотетического экасилиция; оно составляет, конечно, более чем простое подтверждение смелой теории, - оно знаменует собой выдающееся расширение химического поля зрения, гигантский шаг в области познания» (К. Винклер).

Американские учёные, открывшие элемент № 101, дали ему название «менделевий» в знак признания заслуг великого русского химика Дмитрия Менделеева, который первым применил Периодическую систему элементов для предсказания свойств тогда ещё не открытых элементов.

Вы познакомились в 8 классе и будете пользоваться в этом году формой Периодической таблицы, которая называется короткопериодной. Однако в профильных классах и в высшей школе преимущественно используется другая форма - длиннопериодный вариант. Сравните их. Что общего и что различного в этих двух формах Периодической таблицы?

Новые слова и понятия

  1. Периодический закон Д. И. Менделеева.
  2. Периодическая система химических элементов Д. И. Менделеева - графическое отображение Периодического закона.
  3. Физический смысл номера элемента, номера периода и номера группы.
  4. Закономерности изменения свойств элементов в периодах и группах.
  5. Значение Периодического закона и Периодической системы химических элементов Д. И. Менделеева.

Задания для самостоятельной работы

  1. Докажите, что Периодический закон Д. И. Менделеева, как и любой другой закон природы, выполняет объясняющую, обобщающую и предсказательную функции. Приведите примеры, иллюстрирующие эти функции у других законов, известных вам из курсов химии, физики и биологии.
  2. Назовите химический элемент, в атоме которого электроны располагаются по уровням согласно ряду чисел: 2, 5. Какое простое вещество образует этот элемент? Какую формулу имеет его водородное соединение и как оно называется? Какую формулу имеет высший оксид этого элемента, каков его характер? Запишите уравнения реакций, характеризующих свойства этого оксида.
  3. Бериллий раньше относили к элементам III группы, и его относительная атомная масса считалась равной 13,5. Почему Д. И. Менделеев перенёс его во II группу и исправил атомную массу бериллия с 13,5 на 9?
  4. Напишите уравнения реакций между простым веществом, образованным химическим элементом, в атоме которого электроны распределены по энергетическим уровням согласно ряду чисел: 2, 8, 8, 2, и простыми веществами, образованными элементами № 7 и № 8 в Периодической системе. Каков тип химической связи в продуктах реакции? Какое кристаллическое строение имеют исходные простые вещества и продукты их взаимодействия?
  5. Расположите в порядке усиления металлических свойств следующие элементы: As, Sb, N, Р, Bi. Обоснуйте полученный ряд, исходя из строения атомов этих элементов.
  6. Расположите в порядке усиления неметаллических свойств следующие элементы: Si, Al, Р, S, Cl, Mg, Na. Обоснуйте полученный ряд, исходя из строения атомов этих элементов.
  7. Расположите в порядке ослабления кислотных свойств оксиды, формулы которых: SiO 2 , Р 2 O 5 , Аl 2 O 3 , Na 2 O, MgO, Сl 2 O 7 . Обоснуйте полученный ряд. Запишите формулы гидроксидов, соответствующих этим оксидам. Как изменяется их кислотный характер в предложенном вами ряду?
  8. Напишите формулы оксидов бора, бериллия и лития и расположите их в порядке возрастания основных свойств. Запишите формулы гидроксидов, соответствующих этим оксидам. Каков их химический характер?
  9. Что такое изотопы? Как открытие изотопов способствовало становлению Периодического закона?
  10. Почему заряды атомных ядер элементов в Периодической системе Д. И. Менделеева изменяются монотонно, т. е. заряд ядра каждого последующего элемента возрастает на единицу по сравнению с зарядом атомного ядра предыдущего элемента, а свойства элементов и образуемых ими веществ изменяются периодически?
  11. Приведите три формулировки Периодического закона, в которых за основу систематизации химических элементов взяты относительная атомная масса, заряд атомного ядра и строение внешних энергетических уровней в электронной оболочке атома.

Периодический закон, один из фундаментальных законов естествознания, открыт великим русским ученым Д.И. Менделеевым в 1869 г. Первоначально закон был сформулирован следующим образом: свойства элементов и их соединений находятся в периодической зависимости от величины их атомного веса (согласно современным представлениям - атомной массы).

Периодический закон был представлен как классификация элементов. На его основе элементы были расположены в естественные группы по совокупности их свойств. Этому моменту было уделено особое внимание: руководствуясь свойствами элементов, Д.И. Менделееву в ряде случаев пришлось даже отступить от последовательного расположения элементов в Периодической системе строго по возрастанию атомных масс (атомных «весов»), например, 18 Аг(39,9) и 19 К(39,1), 52 Те(127,6) и 53 1(126,9).

Во времена Менделеева причина периодичности свойств элементов не была известна. Однако первооткрыватель Периодического закона был уверен, что причину следует искать в строении вещества.

Открытие Периодического закона не только дало фундамент химической науке, но и поставило задачу выяснения физической причины периодичности. Химические и абсолютное большинство физических свойств элементов являются периодической функцией некоторой независимой, однозначно определяемой величины, присущей каждому элементу и изменяющейся монотонно от элемента к элементу. Атомная масса («атомный вес») была принята Менделеевым за такую величину.

Только когда благодаря успехам физики стало известно значительно больше о строении атома, чем во времена открытия и становления периодического закона, стали ясны его подлинный смысл и причины периодичности. От элемента к элементу по Периодической системе изменяется заряд ядра атома элемента, который определяется числом протонов. В Периодической системе это число совпадает с порядковым номером элемента. Поскольку атом электронейтра- лен, заряд ядра (в единицах заряда электрона) равен количеству электронов в электронной оболочке атома. Увеличение порядкового номера элемента на единицу означает, что в ядре атома добавился один протон, а в электронной оболочке соответственно один электрон. Поскольку свойства элементов, особенно химические, определяются в основном электронами внешнего квантового слоя, причиной периодичности свойств является периодичность характера заполнения электронами пространства вокруг ядра. Фактором, определяющим строение электронных оболочек атомов, а следовательно, и свойства элементов, является заряд ядра атома. Поэтому современная формулировка периодического закона следующая: свойства элементов и их соединений находятся в периодической зависимости от заряда ядра атома элемента.

Атомная масса элемента определяется суммарным количеством нуклонов (протонов и нейтронов) в ядрах изотопов этого элемента и изотопным составом элемента. Изменение атомной массы в основном пропорционально заряду ядра. Поэтому менделеевская формулировка Периодического закона за немногими исключениями верно отражает расположение элементов в Периодической системе, но не раскрывает причину периодичности.

Согласно принципу Паули количество возможных электронных состояний в квантовых уровнях и подуровнях ограничено количеством сочетаний неповторяющихся наборов четырех квантовых чисел п, /, т и s , и это определяет емкость квантовых уровней и подуровней (см. табл. 2.1). Если атом не возбужден, электроны заполняют такие орбитали, энергия на которых минимальна.

Периодическая система была бы проще, если бы энергию в многоэлектронных атомах, как в атоме водорода, определяло главное квантовое число. Тогда, в соответствии с емкостью квантовых слоев, периоды состояли бы из 2, 8, 18, 32, 50 и т.д. элементов, а благородные газы с завершенным квантовым уровнем имели бы номера 2, 10, 28, 60, 110... Однако из-за межэлектронного взаимодействия такая последовательность нарушается. С IV периода, заполнение нового квантового слоя, которое в Периодической системе соответствует началу нового периода, начинается при незавершенном предвне- шнем III квантовом уровне, а с VI периода - при незавершенных IV и V квантовых уровнях и т.д. Поэтому благородные газы - элементы, после которых начинается застройка нового квантового уровня (и новый период), - на внешнем квантовом слое содержит лишь по 8 электронов и имеют номера 2, 10, 18, 36, 54, и 86. Соответственно периоды охватывают 2, 8, 8, 18, 18 и 32 элемента.

Периодический закон не имеет определенного математического выражения. Он представляется в виде периодической таблицы. Вариантов такой таблицы существует несколько, но все они в той или иной форме представлены как структурограммы строения атома любого элемента. Становится возможным установление электронного строения любого атома не только на основе известной последовательности заполнения подуровней или правила Клечковского, но и на основе самой таблицы: положение элемента в таблице однозначно отражает электронное строение его атомов. Распределение элементов по периодам и по подгруппам в точности отвечает распределению электронов атомов этих элементов по уровням и подуровням электронной оболочки.

2.3. Периодический закон Д.И.Менделеева.

Закон открыт и сформулирован Д.И.Менделеевым: «Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от атомных весов элементов». Закон создан на основе глубокого анализа свойств элементов и их соединений. Выдающиеся достижения физики, главным образом разработка теории строения атома, дали возможность раскрыть физическую сущность периодического закона: периодичность в изменении свойств химических элементов обусловлена периодическим изменением характера заполнения электронами внешнего электронного слоя по мере возрастания числа электронов, определяемого зарядом ядра. Заряд равен порядковому номера элемента в периодической системе. Современная формулировка периодического закона: «Свойства элементов и образуемых ими простых и сложных веществ находятся в периодической зависимости от заряда ядра атомов». Созданная Д.И.Менделеевым в 1869-1871 гг. периодическая система является естественной классификацией элементов, математическим отражением периодического закона.

Менделеев не только первый точно сформулировал этот закон и представил содержание его в виде таблицы, которая стала классической, но и всесторонне обосновал его, показал его огромное научное значение, как руководящего классификационного принципа и как могучего орудия для научного исследования.

Физический смысл периодического закона. Был вскрыт лишь после выяснения того, что заряд ядра атома возрастает при переходе от одного химического элемента к соседнему (в периодической системе) на единицу элементарного заряда. Численно заряд ядра равен порядковому номеру (атомному номеру Z) соответствующего элемента в периодической системе, то есть числу протонов в ядре, в свою очередь равному числу электронов соответствующего нейтрального атома. Химические свойства атомов определяются структурой их внешних электронных оболочек, периодически изменяющейся с увеличением заряда ядра, и, следовательно, в основе периодического закона лежит представление об изменении заряда ядра атомов, а не атомной массы элементов. Наглядная иллюстрация периодического закона - кривые периодические изменения некоторых физических величин (ионизационных потенциалов, атомных радиусов, атомных объёмов) в зависимости от Z. Какого-либо общего математического выражения периодического закона не существует. Периодический закон имеет огромное естественнонаучное и философское значение. Он позволил рассматривать все элементы в их взаимной связи и прогнозировать свойства неизвестных элементов. Благодаря периодическому закону многие научные поиски (например, в области изучения строения вещества - в химии, физике, геохимии, космохимии, астрофизике) получили целенаправленный характер. Периодический закон - яркое проявление действия общих законов диалектики, в частности закона перехода количества в качество.

Физический этап развития периодического закона можно в свою очередь разделить на несколько стадий:

1. Установление делимости атома на основании открытия электрона и радиоактивности (1896-1897);

2. Разработка моделей строения атома (1911-1913);

3. Открытие и разработка системы изотопов (1913);

4. Открытие закона Мозли (1913), позволяющего экспериментально определять заряд ядра и номер элемента в периодической системе;

5. Разработка теории периодической системы на основании представлений о строении электронных оболочек атомов (1921-1925);

6. Создание квантовой теории периодической системы (1926-1932).


2.4. Предсказание существования неизвестных элементов.

Самое же важное в открытии Периодического закона - предсказание существования еще не открытых химических элементов. Под алюминием Al Менделеев оставил место для его аналога "экаалюминия", под бором B - для "экабора", а под кремнием Si - для "экасилиция". Так назвал Менделеев еще не открытые химические элементы. Он даже дал им символы El, Eb и Es.

По поводу элемента "экасилиция" Менделеев писал: "Мне кажется, наиболее интересным из, несомненно, недостающих металлов будет тот, который принадлежит к IV группе аналогов углерода, а именно, к III ряду. Это будет металл, следующий тотчас же за кремнием, и потому назовем его экасилицием". Действительно, этот еще не открытый элемент должен был стать своеобразным "замком", связывающим два типичных неметалла - углерод C и кремний Si - с двумя типичными металлами - оловом Sn и свинцом Pb.

Затем предсказал существование еще восьми элементов, в том числе "двителлура" - полония (открыт в 1898 г.), "экаиода" - астата (открыт в 1942-1943 гг.), "двимарганца" - технеция (открыт в 1937 г.), "экацезия" - Франция (открыт в 1939 г.)

В 1875 году французский химик Поль-Эмиль Лекок де Буабодран открыл в минерале вюртците - сульфиде цинка ZnS - предсказанный Менделеевым "экаалюминий" и назвал его в честь своей родины галлием Ga (латинское название Франции - "Галлия").

Менделеев точно предсказал свойства экаалюминия: его атомную массу, плотность металла, формулу оксида El 2 O 3 , хлорида ElCl 3 , сульфата El 2 (SO 4) 3 . После открытия галлия эти формулы стали записывать как Ga 2 O 3 , GaCl 3 и Ga 2 (SO 4) 3 . Менделеев предугадал, что это будет очень легкоплавкий металл, и действительно, температура плавления галлия оказалась равной 29,8 о С. По легкоплавкости галлий уступает только ртути Hg и цезию Cs.

Среднее содержание Галлий в земной коре относительно высокое, 1,5-10-30% по массе, что равно содержанию свинца и молибдена. Галлий - типичный рассеянный элемент. Единственный минерал Галлий - галдит CuGaS2, очень редок. На воздухе при обычной температуре Галлий стоек. Выше 260°С в сухом кислороде наблюдается медленное окисление (плёнка окиси защищает металл). В серной и соляной кислотах галлий растворяется медленно, в плавиковой - быстро, в азотной кислоте на холоду Галлий устойчив. В горячих растворах щелочей Галлий медленно растворяется. Хлор и бром реагируют с Галлий на холоду, иод - при нагревании. Расплавленный Галлий при температурах выше 300° С взаимодействует со всеми конструкционными металлами и сплавами Отличительная особенность Галлий - большой интервал жидкого состояния (2200° С) и низкое давление пара при температурах до 1100-1200°С.. Геохимия Галлий тесно связана с геохимией алюминия, что обусловлено сходством их физико-химических свойств. Основная часть Галлий в литосфере заключена в минералах алюминия. Содержание Галлий в бокситах и нефелинах колеблется от 0,002 до 0,01%. Повышенные концентрации Галлий наблюдаются также в сфалеритах (0,01-0,02%), в каменных углях (вместе с германием), а также в некоторых железных рудах. Широкого промышленного применения Галлий пока не имеет. Потенциально возможные масштабы попутного получения Галлий в производстве алюминия до сих пор значительно превосходят спрос на металл.

Наиболее перспективно применение Галлий в виде химических соединений типа GaAs, GaP, GaSb, обладающих полупроводниковыми свойствами. Они могут применяться в высокотемпературных выпрямителях и транзисторах, солнечных батареях и др. приборах, где может быть использован фотоэффект в запирающем слое, а также в приёмниках инфракрасного излучения. Галлий можно использовать для изготовления оптических зеркал, отличающихся высокой отражательной способностью. Сплав алюминия с Галлий предложен вместо ртути в качестве катода ламп ультрафиолетового излучения, применяемых в медицине. Жидкий Галлий и его сплавы предложено использовать для изготовления высокотемпературных термометров (600-1300° С) и манометров. Представляет интерес применение Галлий и его сплавов в качестве жидкого теплоносителя в энергетических ядерных реакторах (этому мешает активное взаимодействие Галлий при рабочих температурах с конструкционными материалами; эвтектический сплав Ga-Zn-Sn оказывает меньшее коррозионное действие, чем чистый Галлий).

В 1879 году шведский химик Ларс Нильсон открыл скандий, предсказанный Менделеевым как экабор Eb. Нильсон писал: "Не остается никакого сомнения, что в скандии открыт экабор... Так подтверждаются нагляднейшим образом соображения русского химика, которые не только дали возможность предсказать существование скандия и галлия, но и предвидеть заранее их важнейшие свойства". Скандий получил название в честь родины Нильсона Скандинавии, а открыл он его в сложном минерале гадолините, имеющем состав Be 2 (Y, Sc) 2 FeO 2 (SiO 4) 2 . Среднее содержание Скандий в земной коре (кларк) 2,2- 10-3% по массе. В горных породах содержание Скандий различно: в ультраосновных 5-10-4, в основных 2,4-10-3, в средних 2,5-10-4, в гранитах и сиенитах 3.10-4; в осадочных породах (1-1,3).10-4. Скандий концентрируется в земной коре в результате магматических, гидротермальных и гипергенных (поверхностных) процессов. Известно два собственных минерала Скандий - тортвейтит и стерреттит; они встречаются чрезвычайно редко. Скандий - мягкий металл, в чистом состоянии легко поддаётся обработке - ковке, прокатке, штамповке. Масштабы применения Скандий весьма ограничены. Окись Скандий идёт на изготовление ферритов для элементов памяти быстродействующих вычислительных машин. Радиоактивный 46Sc используется в нейтронно-активационном анализе и в медицине. Сплавы Скандий, обладающие небольшой плотностью и высокой температурой плавления, перспективны как конструкционные материалы в ракетои самолётостроении, а ряд соединений Скандий может найти применение при изготовлении люминофоров, оксидных катодов, в стекольном и керамических производствах, в химической промышленности (в качестве катализаторов) и в других областях. В 1886 году профессор Горной академии во Фрайбурге немецкий химик Клеменс Винклер при анализе редкого минерала аргиродита состава Ag 8 GeS 6 обнаружил еще один элемент, предсказанный Менделеевым. Винклер назвал открытый им элемент германием Ge в честь своей родины, но это почему-то вызвало резкие возражения со стороны некоторых химиков. Они стали обвинять Винклера в национализме, в присвоении открытия, которое сделал Менделеев, уже давший элементу имя "экасилиций" и символ Es. Обескураженный Винклер обратился за советом к самому Дмитрию Ивановичу. Тот объяснил, что именно первооткрыватель нового элемента должен дать ему название. Общее содержание Германий в земной коре 7.10-4% по массе, т. е. больше, чем, например, сурьмы, серебра, висмута. Однако собственные минералы Германий встречаются исключительно редко. Почти все они представляют собой сульфосоли: германит Cu2 (Cu, Fe, Ge, Zn)2 (S, As)4, аргиродит Ag8GeS6, конфильдит Ag8(Sn, Ce) S6 и др. Основная масса Германий рассеяна в земной коре в большом числе горных пород и минералов: в сульфидных рудах цветных металлов, в железных рудах, в некоторых окисных минералах (хромите, магнетите, рутиле и др.), в гранитах, диабазах и базальтах. Кроме того, Германий присутствует почти во всех силикатах, в некоторых месторождениях каменного угля и нефти. Германий - один из наиболее ценных материалов в современной полупроводниковой технике. Он используется для изготовления диодов, триодов, кристаллических детекторов и силовых выпрямителей. Монокристаллический Германий применяется также в дозиметрических приборах и приборах, измеряющих напряжённость постоянных и переменных магнитных полей. Важной областью применения Германий является инфракрасная техника, в частности производство детекторов инфракрасного излучения, работающих в области 8-14 мк. Перспективны для практического использования многие сплавы, в состав которых входят Германий, стекла на основе GeO2 и др. соединения Германий.

Предугадать существование группы благородных газов Менделеев не мог, и им поначалу не нашлось места в Периодической системе.

Открытие аргона Ar английскими учеными У. Рамзаем и Дж. Релеем в 1894 году сразу же вызвало бурные дискуссии и сомнения в Периодическом законе и Периодической системе элементов. Менделеев вначале посчитал аргон аллотропной модификацией азота и только в 1900 году под давлением непреложных фактов согласился с присутствием в Периодической системе "нулевой" группы химических элементов, которую заняли другие благородные газы, открытые вслед за аргоном. Теперь эта группа известна под номером VIIIА.

В 1905 году Менделеев написал: "По-видимому, периодическому закону будущее не грозит разрушением, а только надстройки и развитие обещает, хотя как русского меня хотели затереть, особенно немцы".

Открытие Периодического закона ускорило развитие химии и открытие новых химических элементов.

Лицейском экзамене, на котором старик Державин благословил юного Пушкина. Роль метра довелось сыграть академику Ю.Ф.Фрицше известному специалисту в органической химии. Кандидатская диссертация Д.И.Менделеев окончил Главный Педагогический институт в 1855 г. Кандидатская диссертация "Изоморфизм в связи с другими отношениями кристаллической формы к составу" стала его первой крупной научной...

Преимущественно по вопросу о капиллярности и поверхностном натяжении жидкостей, а часы досуга проводил в кругу молодых русских ученых: С.П. Боткина, И.М. Сеченова, И.А. Вышнеградского, А.П. Бородина и др. В 1861 г. Менделеев возвращается в Санкт-Петербург, где возобновляет чтение лекций по органической химии в университете и издает замечательный по тому времени учебник: "Органическая химия", в...